Lesson 28: Gripper/Manipulator Integration

Adding Robotic Arms and Grippers to Your miniAuto

Learning Objectives

1. Introduction to Robotic Manipulation

Robotic manipulation is the ability of a robot to interact with and modify its environment through physical contact. This involves:

Key Components:

Types of Grippers:

2. Servo Motor Control Fundamentals

Servo motors provide precise position control essential for robotic manipulation:

Servo Control Basics:

// Basic servo control setup
#include <Servo.h>

Servo gripperServo;
Servo armServo;

void setup() {
  Serial.begin(115200);
  
  // Attach servos to pins
  gripperServo.attach(9);   // Gripper servo on pin 9
  armServo.attach(10);      // Arm servo on pin 10
  
  // Initialize to neutral positions
  gripperServo.write(90);   // Open position
  armServo.write(90);       // Neutral arm position
  
  delay(1000);
}

void loop() {
  // Demonstrate basic movements
  pickAndPlace();
  delay(2000);
}
                

Precise Position Control:

// Smooth servo movement function
void moveServoSmoothly(Servo &servo, int startPos, int endPos, int stepDelay) {
  int currentPos = startPos;
  int step = (endPos > startPos) ? 1 : -1;
  
  while (currentPos != endPos) {
    servo.write(currentPos);
    delay(stepDelay);
    currentPos += step;
  }
}

// Gripper control functions
void openGripper() {
  moveServoSmoothly(gripperServo, gripperServo.read(), 180, 15);
  Serial.println("Gripper opened");
}

void closeGripper() {
  moveServoSmoothly(gripperServo, gripperServo.read(), 0, 15);
  Serial.println("Gripper closed");
}
                

3. Gripper Mechanics and Force Control

Understanding the mechanical principles behind effective gripping:

Force and Torque Considerations:

Adaptive Gripping Algorithm:

// Adaptive gripper with force feedback
int gripperCurrentPin = A0;  // Current sensor for force feedback
int maxGripCurrent = 500;    // Maximum safe current reading

bool adaptiveGrip(int targetObject) {
  Serial.println("Starting adaptive grip sequence...");
  
  // Open gripper fully
  openGripper();
  delay(500);
  
  // Slowly close until contact detected
  for (int pos = 180; pos >= 0; pos -= 2) {
    gripperServo.write(pos);
    delay(50);
    
    // Check current draw (force feedback)
    int current = analogRead(gripperCurrentPin);
    
    if (current > maxGripCurrent) {
      Serial.println("Object detected - grip achieved");
      return true;
    }
  }
  
  Serial.println("No object detected");
  return false;
}
                

4. Vision-Guided Object Manipulation

Integrating computer vision with manipulation for autonomous object handling:

Object Detection and Positioning:

// Vision-guided picking system
struct ObjectPosition {
  int x, y;
  int size;
  bool detected;
};

ObjectPosition detectObject() {
  ObjectPosition obj = {0, 0, 0, false};
  
  // Capture image from ESP32-S3 camera
  camera_fb_t *fb = esp_camera_fb_get();
  if (!fb) {
    Serial.println("Camera capture failed");
    return obj;
  }
  
  // Simple color-based object detection
  // (In practice, use more sophisticated algorithms)
  int targetPixels = 0;
  int centerX = 0, centerY = 0;
  
  for (int y = 0; y < fb->height; y += 4) {
    for (int x = 0; x < fb->width; x += 4) {
      // Check if pixel matches target color
      if (isTargetColor(fb->buf, x, y, fb->width)) {
        centerX += x;
        centerY += y;
        targetPixels++;
      }
    }
  }
  
  if (targetPixels > 50) {  // Minimum object size
    obj.x = centerX / targetPixels;
    obj.y = centerY / targetPixels;
    obj.size = targetPixels;
    obj.detected = true;
    
    Serial.printf("Object detected at (%d, %d), size: %d
", 
                  obj.x, obj.y, obj.size);
  }
  
  esp_camera_fb_return(fb);
  return obj;
}
                

Coordinate Transformation:

// Convert camera coordinates to robot coordinates
void moveToObject(ObjectPosition obj) {
  if (!obj.detected) return;
  
  // Camera-to-robot coordinate transformation
  // These values need calibration for your specific setup
  float pixelToMM = 0.5;  // mm per pixel
  float cameraOffsetX = 50;  // Camera offset from gripper center
  float cameraOffsetY = 30;
  
  // Calculate real-world coordinates
  float objectX = (obj.x - 160) * pixelToMM + cameraOffsetX;  // 160 = camera center
  float objectY = (obj.y - 120) * pixelToMM + cameraOffsetY;  // 120 = camera center
  
  Serial.printf("Moving to object at (%.1f, %.1f) mm
", objectX, objectY);
  
  // Move robot base to position gripper over object
  positionRobotBase(objectX, objectY);
  
  // Lower arm and attempt grip
  lowerArm();
  if (adaptiveGrip(1)) {
    Serial.println("Object successfully grasped");
    raiseArm();
  }
}
                

5. Coordinated Movement Strategies

Coordinating base movement with arm manipulation for complex tasks:

Multi-DOF Control:

// Coordinated pick and place operation
void pickAndPlace() {
  Serial.println("Starting pick and place sequence");
  
  // Phase 1: Search for object
  ObjectPosition target = scanForObject();
  if (!target.detected) {
    Serial.println("No object found");
    return;
  }
  
  // Phase 2: Approach object
  approachObject(target);
  
  // Phase 3: Pick up object
  if (pickUpObject()) {
    Serial.println("Object picked up successfully");
    
    // Phase 4: Move to drop location
    moveToDropZone();
    
    // Phase 5: Release object
    releaseObject();
    
    // Phase 6: Return to home position
    returnHome();
  }
}

ObjectPosition scanForObject() {
  Serial.println("Scanning for objects...");
  
  // Rotate base while scanning with camera
  for (int angle = -90; angle <= 90; angle += 30) {
    rotateBase(angle);
    delay(500);  // Allow movement to settle
    
    ObjectPosition obj = detectObject();
    if (obj.detected) {
      Serial.printf("Object found at base angle %d degrees
", angle);
      return obj;
    }
  }
  
  // Return to center if no object found
  rotateBase(0);
  return {0, 0, 0, false};
}
                

6. Inverse Kinematics Basics

Mathematical approach to determining joint angles for desired end-effector positions:

2-DOF Arm Kinematics:

// Simple 2-DOF arm inverse kinematics
struct ArmConfiguration {
  float shoulderAngle;
  float elbowAngle;
  bool reachable;
};

ArmConfiguration calculateIK(float targetX, float targetY) {
  ArmConfiguration config = {0, 0, false};
  
  // Arm segment lengths (in mm)
  float L1 = 100;  // Upper arm length
  float L2 = 80;   // Forearm length
  
  // Calculate distance to target
  float distance = sqrt(targetX * targetX + targetY * targetY);
  
  // Check if target is reachable
  if (distance > (L1 + L2) || distance < abs(L1 - L2)) {
    Serial.println("Target position not reachable");
    return config;
  }
  
  // Calculate elbow angle using law of cosines
  float cosElbow = (L1*L1 + L2*L2 - distance*distance) / (2*L1*L2);
  config.elbowAngle = acos(cosElbow) * 180.0 / PI;
  
  // Calculate shoulder angle
  float alpha = atan2(targetY, targetX) * 180.0 / PI;
  float beta = acos((L1*L1 + distance*distance - L2*L2) / (2*L1*distance)) * 180.0 / PI;
  config.shoulderAngle = alpha + beta;
  
  config.reachable = true;
  
  Serial.printf("IK Solution: Shoulder=%.1f°, Elbow=%.1f°
", 
                config.shoulderAngle, config.elbowAngle);
  
  return config;
}
                

🛠️ Hands-On Project: Autonomous Sorting System

Build a complete autonomous sorting system that uses vision to identify colored objects and sorts them into different containers.

Project Requirements:

Implementation Steps:

  1. Set up gripper and arm servos with proper calibration
  2. Implement color detection algorithm for multiple colors
  3. Create coordinate transformation from camera to robot space
  4. Develop path planning to avoid obstacles and containers
  5. Test and refine gripping force for various objects
  6. Integrate all systems for autonomous operation

7. Advanced Applications

Real-world applications of robotic manipulation:

Industrial Applications:

Service Robotics:

Safety Considerations:
  • Always implement emergency stops for robotic arms
  • Use appropriate force limits to prevent damage
  • Ensure proper workspace boundaries and collision detection
  • Test all movements at slow speeds before full operation

8. Assessment & Homework

Quick Check Questions:

  1. What are the main components of a robotic manipulation system?
  2. How does force feedback improve gripping performance?
  3. What is inverse kinematics and why is it important?
  4. How do you coordinate base movement with arm manipulation?
  5. What safety considerations are important for robotic arms?

Programming Assignment:

Design Challenge: Create a "Smart Warehouse" system where your miniAuto robot can:

Bonus Challenge: Implement a "restocking" mode where the robot can retrieve specific items on command and deliver them to a pickup location.

Ready to Test Your Knowledge?

Take the Lesson 28 quiz to assess your understanding of gripper and manipulator integration concepts!

Take Lesson 28 Quiz →