Adding Robotic Arms and Grippers to Your miniAuto
Robotic manipulation is the ability of a robot to interact with and modify its environment through physical contact. This involves:
Servo motors provide precise position control essential for robotic manipulation:
// Basic servo control setup
#include <Servo.h>
Servo gripperServo;
Servo armServo;
void setup() {
Serial.begin(115200);
// Attach servos to pins
gripperServo.attach(9); // Gripper servo on pin 9
armServo.attach(10); // Arm servo on pin 10
// Initialize to neutral positions
gripperServo.write(90); // Open position
armServo.write(90); // Neutral arm position
delay(1000);
}
void loop() {
// Demonstrate basic movements
pickAndPlace();
delay(2000);
}
// Smooth servo movement function
void moveServoSmoothly(Servo &servo, int startPos, int endPos, int stepDelay) {
int currentPos = startPos;
int step = (endPos > startPos) ? 1 : -1;
while (currentPos != endPos) {
servo.write(currentPos);
delay(stepDelay);
currentPos += step;
}
}
// Gripper control functions
void openGripper() {
moveServoSmoothly(gripperServo, gripperServo.read(), 180, 15);
Serial.println("Gripper opened");
}
void closeGripper() {
moveServoSmoothly(gripperServo, gripperServo.read(), 0, 15);
Serial.println("Gripper closed");
}
Understanding the mechanical principles behind effective gripping:
// Adaptive gripper with force feedback
int gripperCurrentPin = A0; // Current sensor for force feedback
int maxGripCurrent = 500; // Maximum safe current reading
bool adaptiveGrip(int targetObject) {
Serial.println("Starting adaptive grip sequence...");
// Open gripper fully
openGripper();
delay(500);
// Slowly close until contact detected
for (int pos = 180; pos >= 0; pos -= 2) {
gripperServo.write(pos);
delay(50);
// Check current draw (force feedback)
int current = analogRead(gripperCurrentPin);
if (current > maxGripCurrent) {
Serial.println("Object detected - grip achieved");
return true;
}
}
Serial.println("No object detected");
return false;
}
Integrating computer vision with manipulation for autonomous object handling:
// Vision-guided picking system
struct ObjectPosition {
int x, y;
int size;
bool detected;
};
ObjectPosition detectObject() {
ObjectPosition obj = {0, 0, 0, false};
// Capture image from ESP32-S3 camera
camera_fb_t *fb = esp_camera_fb_get();
if (!fb) {
Serial.println("Camera capture failed");
return obj;
}
// Simple color-based object detection
// (In practice, use more sophisticated algorithms)
int targetPixels = 0;
int centerX = 0, centerY = 0;
for (int y = 0; y < fb->height; y += 4) {
for (int x = 0; x < fb->width; x += 4) {
// Check if pixel matches target color
if (isTargetColor(fb->buf, x, y, fb->width)) {
centerX += x;
centerY += y;
targetPixels++;
}
}
}
if (targetPixels > 50) { // Minimum object size
obj.x = centerX / targetPixels;
obj.y = centerY / targetPixels;
obj.size = targetPixels;
obj.detected = true;
Serial.printf("Object detected at (%d, %d), size: %d
",
obj.x, obj.y, obj.size);
}
esp_camera_fb_return(fb);
return obj;
}
// Convert camera coordinates to robot coordinates
void moveToObject(ObjectPosition obj) {
if (!obj.detected) return;
// Camera-to-robot coordinate transformation
// These values need calibration for your specific setup
float pixelToMM = 0.5; // mm per pixel
float cameraOffsetX = 50; // Camera offset from gripper center
float cameraOffsetY = 30;
// Calculate real-world coordinates
float objectX = (obj.x - 160) * pixelToMM + cameraOffsetX; // 160 = camera center
float objectY = (obj.y - 120) * pixelToMM + cameraOffsetY; // 120 = camera center
Serial.printf("Moving to object at (%.1f, %.1f) mm
", objectX, objectY);
// Move robot base to position gripper over object
positionRobotBase(objectX, objectY);
// Lower arm and attempt grip
lowerArm();
if (adaptiveGrip(1)) {
Serial.println("Object successfully grasped");
raiseArm();
}
}
Coordinating base movement with arm manipulation for complex tasks:
// Coordinated pick and place operation
void pickAndPlace() {
Serial.println("Starting pick and place sequence");
// Phase 1: Search for object
ObjectPosition target = scanForObject();
if (!target.detected) {
Serial.println("No object found");
return;
}
// Phase 2: Approach object
approachObject(target);
// Phase 3: Pick up object
if (pickUpObject()) {
Serial.println("Object picked up successfully");
// Phase 4: Move to drop location
moveToDropZone();
// Phase 5: Release object
releaseObject();
// Phase 6: Return to home position
returnHome();
}
}
ObjectPosition scanForObject() {
Serial.println("Scanning for objects...");
// Rotate base while scanning with camera
for (int angle = -90; angle <= 90; angle += 30) {
rotateBase(angle);
delay(500); // Allow movement to settle
ObjectPosition obj = detectObject();
if (obj.detected) {
Serial.printf("Object found at base angle %d degrees
", angle);
return obj;
}
}
// Return to center if no object found
rotateBase(0);
return {0, 0, 0, false};
}
Mathematical approach to determining joint angles for desired end-effector positions:
// Simple 2-DOF arm inverse kinematics
struct ArmConfiguration {
float shoulderAngle;
float elbowAngle;
bool reachable;
};
ArmConfiguration calculateIK(float targetX, float targetY) {
ArmConfiguration config = {0, 0, false};
// Arm segment lengths (in mm)
float L1 = 100; // Upper arm length
float L2 = 80; // Forearm length
// Calculate distance to target
float distance = sqrt(targetX * targetX + targetY * targetY);
// Check if target is reachable
if (distance > (L1 + L2) || distance < abs(L1 - L2)) {
Serial.println("Target position not reachable");
return config;
}
// Calculate elbow angle using law of cosines
float cosElbow = (L1*L1 + L2*L2 - distance*distance) / (2*L1*L2);
config.elbowAngle = acos(cosElbow) * 180.0 / PI;
// Calculate shoulder angle
float alpha = atan2(targetY, targetX) * 180.0 / PI;
float beta = acos((L1*L1 + distance*distance - L2*L2) / (2*L1*distance)) * 180.0 / PI;
config.shoulderAngle = alpha + beta;
config.reachable = true;
Serial.printf("IK Solution: Shoulder=%.1f°, Elbow=%.1f°
",
config.shoulderAngle, config.elbowAngle);
return config;
}
Build a complete autonomous sorting system that uses vision to identify colored objects and sorts them into different containers.
Real-world applications of robotic manipulation:
Design Challenge: Create a "Smart Warehouse" system where your miniAuto robot can:
Bonus Challenge: Implement a "restocking" mode where the robot can retrieve specific items on command and deliver them to a pickup location.
Take the Lesson 28 quiz to assess your understanding of gripper and manipulator integration concepts!
Take Lesson 28 Quiz →